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Abstract

This paper discusses the design of a high clock rate (300MHz)

processoc The architecture is described, and the goals for the
design are explained. The perjiormance of three processor models
is evaluated using trace -dn”ven simulation. A cost model is used to

estimate the resources required to build processors with varying

sizes of on-chip memories, in both single and dual issue models.
Recommendations are then made to increase the effectiveness of
each of the models.

Keywords: Pipelining, decoupled architecture, prefetching,

non-blocking cache, resource allocation, superscala~ jloating
point latencies.

1 Introduction

This paper describes the decisions made in the design of an

experimental high-performance general purpose processor suit-
able for a workstation or a high end PC system. The goals include
integer performance of 200 SPECint and floating point perfor-
mance of 300 SPECfp, with power dissipation such that the sys-

tem can be air cooled. Fast switching speeds led us to choose
Gallium Arsenide Direct Coupled FET Logic (DCFL) combined
with MCM technology to build a compact multiple-chip process-

ing element. The MIPS R3000 ISA was chosen because it is a rel-
atively clean architecture with good architectural development
tools.

Figure 1 shows single chip microprocessor clock frequencies
for processors presented at the International Solid State Circuit

Conference. Over the past 10 years the frequency of microproces-

sors has increased at a rate of about 40% per year. The fastest chip
introduced each year is usually at least twice as fast as the slowest
chip for that year, and the gap has been widening. The fastest

clock rate processors do not necessarily have the highest system

level performance, but the overall trend reflected in this data

strongly suggests that processor clock frequencies will continue to
increase.

In contrast, the rate of increase in main memory speed has

been lower than that of CPUS. The core-based main memory
access time of the CDC6600 was 1000ns [15]. Main memory
operations on the 1978-vintage VAX 11-780 required 6 cycles of
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200ns, or 1200ns. Access times in current high-end workstations

such as the HP 9000/735 have decreased to around 150ns, but this

may be as many as 20 cycles. Over the past decade, main memory

speeds have improved by only a factor of 10, while processor
speeds have increased by a factor of 100. As cycle times continue
to improve, the primary cache miss penalties will rise from their

current levels to as many as 100 clock cycles.
The increasing performance difference between processor and

memory speeds, combined with large but finite transistor budgets,
presents many interesting trade-offs for computer architects.
Given a limited resource budget, the designer must choose the

relocation of resources needed to optimize performance. With a
limited chip ar+ resources could be devoted to increasing the on-

chip cache size, adding other memory structures, or adding execu-
tion units. At high clock rates, additional execution units may be
starved for data because of long memory latencies.

This paper examines the resource allocation in superscalar
multi-chip microprocessor design. The architecture is briefly
described and the goals for the design are explained. The perfor-
mance of three processor configurations is evahrated using trace-

driven simulation. A cost model is used to estimate the resources
required to build processors with varying sizes of on-chip memo-
ries in both single and dual issue versions. Recommendations are

then made to increase the effectiveness of each of the models.

2 System Overview

The Aurora III microprocessor is the culmination of three
years of research on implementing pipelined microprocessors

using GaAs technology. A block diagram of the Aurora III system
is shown in Figure 2. The system is composed of four custom

GaAs chips: three logic chips and a 32 K-bit SRAM used for
building a 64 K-byte data cache. The logic chips are the Floating

Point Unit (FPU), Integer Processing Unit (IPU) and Memory

Management Unit (MMU). This partitioning is similar to the SGI
R8000 TFP processor [6].

For the system level performance of our GaAs chipset to be
competitive with that of contemporary CMOS processors the
GaAs system must overcome with increased clock speed the
CMOS advantage of much higher integration density, which
allows increased parallelism and larger caches. We have explored

processor microarchitectures that allow parallel instruction issue

without adversely impacting system cycle time.
The IPU consists of five functional modules that operate semi-

autonomously to fetch, decode, execute and retire instructions.

TM work was supported by the Denfese Advanced Research Projects
Agency under Contract Number DAAL03-90-C-O028.
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Figure 1: Microprocessor Clock Frequencies

3nglectip microprwessor clock frquencies forprocessors pre~nted atthe last eleven international Solid State Circuit Conferences. The line
ahown represents about a 40% increase per year m frequency.

The IPU is similar to the IBM-Motorola PowerPC 603 and 604 the bus. Using a Rarnbus-like signaling scheme [10], the clock is

processors [2] inthatit includes aBus Interface Unit (BIU), an generated on-chip and sent with the data to minimize clock skew.

Integer Execution Unit (IEU), an Instruction Fetch Unit (IFU), Data is transferred on both edges of the clock to maximize IO

and a Load Store Unit (LSU). In addition to these the IPU has a bandwidth.

dedicated Ilefetch Unit (PFU) for data and instructions. Instruction Fetch Unit The IFU fetches instructions and

Bus Interface Unit The Aurora III memory system is maintaining the state of the on-chip Instmction Cache. Icache

designed to provide a large memory bandwidth from main mem- misses are detected in the IFU, and the missing instructions are

ory through the MMU to the primary caches. Sustained transfer requested from the MMU via the BIU. The front of the IEU pipc-

rates of over 1.5 G-bytes per second have been demonstrated in line stalls until the needed instructions arrive, but the LSU contin-

the BIU performance model for typical workloads [14]. Long ues to process pending data cache misses, and the reorder buffer

memory latencies require high bandwidth to support prefetching continues to retire completed instructions.

and nonblocking caches [9]. The asynchronous BIU interface An on-chip instruction cache was required to support a two-

allows external communication and internal computation to pro- instmction-per-cycle issue rate. Too few IO pins were available to

teed independently. fetch 64 instruction bits each cycle. Thexe are few restrictions on

The IPU is connected to the MMU by a bidirectional 32-bit which instructions can issue together. Other than true instruction

bus. To tolerate the transaction latency in the system, multiple dependencies, in which an instruction uses the result of the imme-
pending requests are buffered in separate transmit and receive diately preceding instruction, the primary issue constraint is that

queues. A split-transaction collision-based protocol allows either only a single memory access instruction can be executed in a

the IPU or MMU to immediately send data without arbitrating for given cycle.
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To speed the instruction issue logic, instructions are predi- cates whether the instruction pair includes a control flow

coded before being inserted into the instruction cache. Figure 3 instruction, such as a jump or branch. The MIPS ISA prohibits a

shows the arrangement of a decoded instruction. All instructions branch instructions in a branch delay slot, so there will be a maxi-
are grouped into pairs, with the EVEN instruction occupying the mum of one control flow instruction in each pair. If the instruction

lower of two consecutive addresses, and the ODD occupying the pair contains a control flow instruction, the NEXT field contains

next sequential address. The DI bit indicates whether an instruc- the cache index of the target instruction. This branch folding [3]

tion pair dependency prohibits dual issue. The CONT field indi- reduces the critical path for a dual issue machine by eliminating
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Figure 3 Decoded Instruction Cache Fields

the branch pipeline bubble. The target of the branch can be

fetched on the next cycle, without needing to compute a target

address from the addtess of the branch instruction.

2.1 Instruction Execution Unit

The key elements of the IEU are the 32x32 integer register file

and two execution pipelines, which consist of art ALU and a six-
entry reorder buffer [13]. A register file scoreboard [15] detects

instruction dependencies and stalls execution until the needed
operands are ready.

To achieve high system clock frequencies, both the area and

the number of logic levels needed to implement a logic function

must be minimized. Among the main contributors to die area in

our previous GaAs microprocessors were the pipeline latches.

These latches increase the operating frequency by breaking long

operations into smailer stages, but they also increase the layout
area. In addition, every pipeline stage after the ALU, such as load

delay slots, requires a forwarding path back to the ALU inputs.
The state latches and forwarding network for one of our earlier
prototypes account for 50% of the execution pipeline area[16].

One way to minimize the area penalty for state latches is to
have a short execution pipeline. LAe the Motorola 88K [1], we

have adopted variable length pipelines, reducing the length of the

integer pipelines to four cycles. Memory instructions require an
additional two or three cycles to produce their results. Virtuat

addresses are genetated in either of two identical integer ALUs.

The address and any store data are transmitted to the LSU and

data cache in one cycle. Forwarding paths allow the ALU output

and the reorder buffer contents to be used as inputs for the next
instruction, avoiding pipeline bubbles.

2.2 Prefetch Unit

A set of hardware prefetch buffers is included to minimize
long memory system latencies caused by the fast clock rate and

multiple chip partitioning. The prefetch buffers predict future

memory requests and bring the data on chip before it is referenced

by the IPU.

Jouppi proposed the addition of a small set of associative

prefetch buffers, called stream buffers, to fetch sequential lines

ahead of the curtent program counter [7]. The stream buffer con-

sists of a tag register, a tag comparator, a set of status bits and a

number of prefetch cache lines for instructions and data. If a
memory reference misses in the primary cache, the stream buffers
are checked to see whether the required data have already been

requested. Jouppi showed that stream buffers can be highly effec-
tive for small caches, reducing the cache miss rate by up to half.

Since we have limited space for on-chip caches, these are an ideal

solution.

On each instruction or data cache miss, a stream buffer is allo-

cated and initialized to fetch the next sequential line. This buffer

initially fetches only a single line. If a subsequent request hks in a
prefetch buffer, additional scqucmtial lines are fetched until the

buffer is filled.

2.3 Load-Store Unit

To simplify the execution unit pipeliies, a separate function

unit processes all memory operations. The IEU computes the

memory address in its ALU and checks for any illegal address

exceptions. The address and store data for store instructions are

passed to the LSU. The IEU rdso provides a 3-bh tag value indi-

cating the reorder buffer destination slot.

To accommodate a data cache large enough to achieve good

system-level performance, the cache RAMs must be extem-d to

the CPU. The system supports external caches of 16 K-, 32 K-,

and 64 K-bytes. The external data cache is direct-mapped, pipe-

lined, and has a three-cycle latency. A new access can be initiated

each cycle. The cache is accessed using two unidirectional 64-bit

data busses and a 14 bit address bus.
To amortize the long primary cache miss penalty, the processor

supports multiple outstanding cache misses. As long as the target
register of a load instruction is not referenced, other instructions

can issue, execute and complete, leaving their results in the reor-

der buffer. Even more importantly, the access delay of multiple

cache misses can be overlapped. A number of Mk.s Service Hold-

ing Registers (MSHRS) maintain the state of pending cache

misses. An MSHR is reserved for each memory instruction active

in the LSU pipeline, and if no MSHRS are available, the processor

stalls until one is free. A machine with only one MSHR cannot
overlap memory operations, and must process each load or store

sequentially.
Write Cache The LSU contains a 32-word coalescing write

buffer called the Write Cache [8]. The 32 data words are orga-
nized as four cache lines of eight words per line. The four lines are
fully associative.

The write cache groups multiple memory references into a sin-
gle BIU transaction. Memory write behavior has two characteris-

tics that are effectively exploited by the write cache. Multiple

writes will often occur to the same address, as would happen in an

inner loop during the updating of the loop index. After the first

write to the index address, subsequent writes would hit in the
write cache, replacing the previous value. Thus fewer BIU trans-

actions are required to keep the memory system coherent. The

second memory access pattern that benefits from a write cache is
vector-like operations such as memory copies or floating-point
intensive code. In these operations, each entry in the write cache
is written in succession, but only one BIU transaction is needed to
retire the eight words.

Write Validation Because the MMU is off-chip, the proces-

sor cannot retire store instructions until it is known that the

address accessed will not cause a memory fault. Receiving a

response from the MMU requires many cycles, so simply query-

ing the MMU about each write address is an unacceptable solu-

tion. Instead the write cache divides the address tags into page and

offset fields. If the page field of the current write address matches

any of the valid page fields contained in the write cache, then a
write or access fault is not possible. In effect, the write cache

operates as a four entry micro-TLB.
Floating Point Support ~ this architecture, floating point

memory instructions transfer data directly between memory and

the integer and floating point register files. Unlike integer stores,
floating point store data is not immediately ready at the time the

instruction is transferred to the LSU. Thus, write cache eviction

and data cache writeback must wait for the data. This adds a cer-

tain degree of complexity to the synchronization of the floating
point data and the cache line within the write cache. In order to
meet package pin constraints, all floating point instruction and

data transfers occur via the input and output busses of the primary
data cache.
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2.4 The Branch Delay Slot Problem in Su-

perscalar Architectures

Although modem RISC machines are designed to have few

implementation artifacts, a notable exception is the architectural

branch delay slot. The branch delay slot was added to rdlow the

processor to execute an instruction while the instruction at the

branch target was being fetched, avoiding bubbles in the pipeline.
Because architectural branch delay slots significantly complicate

the design of superscalar machines, they have been eliminated
from more recent architectures such as the DEC Alpha [4]. The

branch delay slot causes problems for a superscalar machine in

many of the same ways that variable length instructions cause

problems for CISC machines. The delay slot may lie on the next

cache line. If this line causes a cache miss, the delay slot address

and the target address must both be saved until the cache line for
the delay slot is fetched. The delay slot must then be issued, and

instruction fetching must resume at the target of the branch. Even

worse problems occur when the branch and the delay slot span
virturd memory page boundaries.

3 Floating Point Unit Design

and the exception flags can be used to predict whether an excep-

tion can occur.

The use of an instruction queue necessitates a corresponding
load queue to store load data prior to its being written into the

floating point register file. However, the depth of W queue does

not need to be as large as that of the instruction queue. Similarly, a

store queue is used to hold the results of floating point store and

move-to-IPU instructions.
The FIT-J also includes a 32x64 entry register file, reorder

buffer, scoreboard, and separate functional units for addition, mul-
tiplication, division and conversion. Up to two floating-point

instructions from the queue can issue per cycle, to any two of the

functional units. Two independent busses are available to write

results from the various functional units to the reorder buffer. The

add unit is pipelined with a latency of three cycles. The multiply

and divide units are iterative and can produce a result in five and

19 cycles, respectively. The conversion unit has a latency of two

cycles and performs conversions between single, double, and inte-
ger formats. Each functional unit supports the IEEE-754

specification for rounding modes and exceptions.

4 Architectural Evaluation

4.1 Benchmarks
3.1 Overview

Limited integration levels in GaAs constrain the amount of

functionality that can be placed on a single chip. Gne obvious par-

titioning, shown in Figure 2, includes separate FPU, IPU, and data
cache chips. Floating point operations tend to have longer laten-

cies than integer instructions, which are made worse when inter-

chip communication is necessary. To support double precision
numbers, floating point datapaths are wider than their integer

counterparts. The time needed to drive control signals across these
wide datapaths places an upper limit on clock frequency and
results in different maximum operating frequencies for the ET-J

and FPU. The resources of the IPU and FPU can be used more
efficiently if the architecture decouples their operation; one way to

achieve this is through the use of instruction and data queues.

The use of an instruction queue instead of a single entry
instruction buffer allows the IPU to slip ahead of the FPU during

program execution. Instead of stalling for FPU data dependencies,
the IPU is able to transfer floating point instructions and continue
execution. The IPU will be forced to stall due to the FPU only
when the queue becomes full or when it has to wait for the result

of an FPU operation. The use of an instruction queue does impact
the precise handling of exceptions, since the IPU may be many

instructions ahead by the time a floating point exception is

detected. Gne solution involves having both a precise execution
mode and a higher performance mode. For the former, instmc-

tions are not transferred to the FPU unless they are guaranteed
never to cause an exception; examination of operand exponents

Architectural performance was evaluated using the integer and
floating point Spec92 benchmarks. Time constraints imposed by

other phases of the design process limited the length of the bench-

marks that could be run. The integer benchmarks used the “small

test” input file, and the floating point benchmarks were limited to
their first 90 million cycles. In all, about 176 million instructions

were run from the integer suite, and about 810 million from the
floating point suite. All benchmarks were compiled using GCC
with no additional code rescheduling.

4.2 Architectural alternatives

Three machine models, referred to as the large, baseline and

smrdl models, were chosen to evaluate the effects of resource relo-
cation and memory latency. The hardware resources allocated to

each are listed in Table 1. Each of the three models is evaluated

with one or two execution pipes, and with secondary memory sys-
tem average Iatencies of 17 and 35 cycles, corresponding to

medium and fast clock rates. Thus, results for 12 configurations
are reported.

The register bit equivalent (RBE) model of Mulder [11] was
used to evaluate the implementation cost in chip area of the differ-

ent configurations. The RBE model provides a normalized mea-

sure for the area cost of diffe~nt microarchitectural components.

For our machines the RBE is the area required to implement a 1-

bit static latch. For GSAS DCFL, one static latch requires about 16

Reorder
D Cache Write Cache Buffer Prefetch MSHR

Model I Cache Size Size Size Entries Buffers Entries

Small 1 Kbyte 16 Kbyte 2 lines 2 2 1

Baseline 2 Kbyte 32 Kbyte 4 lines 6 4 2

Large 4 Kbyte 64 Kbyte 6 lines 6 8 4

Table 1: The Three Machine Models and their Associated Resources
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IPU Element Cost in RBE FPU Element Cost in RBE

1 Kbyte Cache Block 8,000 1 Data Resource Block (RF, SB) 4,000

2 Kbyte Cache Block 12,000 1 Queue Entry (instructiorVdata) 50/80

4 Kbyte Cache Block 20,000 1 Add Unit (l-5 cycles) 5,000-1,250

1 Write Cache Line 320 1 Multiply Unit (l-5 cycles) 6,875-2,500

1 Prefetch Line 320 1 Divtde Unit (10-30 cycles) 2,500-625

1 Reorder Buffer Entry 200 1 Conversion Unit (1-5 cycles) 2,500-1,250

1 MSHR Entry 50

1 Integer Exacution Pipeline 8192

Table 2: Processor Element Cost in RBE Units

transistors and corresponds to an area of about 3600 square

microns. Static RAM elements are denser, with a single blt requir-
ing an area equal to 0.5 RBE. However, RAM blocks have addi-

tional overhead devoted to decoding and sensing. This overhead is

a significant fraction of total area for small RAM blocks. The cost
of each microarehitectural element is listed in Table 2. These fig-

ures are based on layout obtained during chip design. In addition
to memory elements, the cost of an execution pipeline is also esti-

mated. An important assumption in this analysis is that the cost of
interconnecting microarchitectural elements is an overhead. that

scales with the sum of their areas.
The cost of data cache is not included in our analysis beeause

limits on die size placed the data cache in chips separate from the

IPU and FPU. A more comprehensive cost analysis would opti-
mize a system consisting of the IPU, FPU and data cache chips on

the MCM in a way analogous to the intra-chip design problems

considered in this paper. Finally, it is important to note that
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increases in area will slow the clock cycle. This issue is addressed

in [12].

5 Study Results

The size and quantity of both on-chip memory structures and
execution pipelines were varied to study the trade-offs between
memory structures and execution logic. The Cycles Per Instruc-

tion (CPI) for each benchmark were measured, and can be com-
pared to the implementation cost to evaluate the effectiveness of
various memory and pipeline structures. The base model instruc-

tion cache hit rate is 96.570 and data cache hit rate is 95.4%; these

numbers agree with those published in [5].
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Figure 4: Dual and Single Issue Performance

Performance vs. cost in RBEs is shown for systems having17 cycle latency and 35 cycle Iatencies. In each graph, the costs of 6 systems are shown. Three are sin-
gle issue and three are dual issue. The vertical Imes with aquere caps show the range of CPI for each configuration. The upper cap is the maximum CPI, the lower
cap is the minimum CPI, and the line is the average CPI.
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model espresso Ii eqntott compress Sc gcc

small 56,26 50.79 94.69 50.73 45.97 56.89

baeelme 61.02 45.33 88.34 53.13 49.01 57.75

large 57.33 40.56 51.41 53.75 48.05 56.10

Table3 integer lPrefetch Hit Rate Percentage

model espresso Ii eqntott compress Sc gcc

small 7.06 9.80 2.65 6.33 22.34 7.84

baseline 8.95 14.41 2.29 13.13 27.42 8.63

large 7.82 14.57 1.53 17.16 30.00 10.02

Table4: integer DPrefetch Hit Rate Percentage

5.1 Model Performance Evaluation

We first examine the performance of each of the three models.
Figure 4 shows the results for dual and single issue for the 3 base-

line models with average secondary latencies of 17 and 35 cycles.
For each graph the cost difference between the two curves is
caused by the addition of a second execution pipeline, which has a

cost of 8192 ~Es.

With 17-cycle latencies, the addition of the second pipe results
in higher performance with the baseline and large models. The
single issue base model has a similar cost and much better perfor-

mance than the dual issue small model. The large model with dual

issue achieves the best performance by 12.7Y0, but with a hard-
ware cost increase of 20.4%. With 35-cycle secondary latencies,
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the dual and single issue machines have similar cost-performance

curves; the dual issue model achieves a 9.!)70 CPI improvement

over the single issue model.

5.2 Instruction and Data Prefetching

Table 3 and Table 4 show the prefetch buffer hit rates for the
instruction and data streams. A prefetch hit occurs if the data

misses in the primary cache and hits in one of the prefetch stream
buffers. Average hit rates for the integer SPEC benchmarks are
58% for the instruction stream and about 12% for the data stream.

Floating-point prcfetch data hit rates average 14.4% for the base
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Figure 5: Effects of Prefetch Removal

Performance in CPI vs. cost in RBEs is shown for systems having 17 and 35 cycle Iatencies. In each graph, the costs of 8 systems are shown. All are dual issue.
The vertical ines with square caps show the range of CPI for each configuration. Filled cape indicate no prefetch and hollow caps prefetch. The average CPIS for
the three systeme with prefetch are connected by a hne. The average CPI for the three without prefetch are also connected by a line.
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z 60T0.

Figure 5 shows the effects of removing the prefetch buffers

from each of the dual issue models. Prefetching is of little benefit

in the small model for a number of reasons. There are only two

buffers in the small model, which leads to thrashing between
instruction and data references. In addition, the cache miss rates

are high, leaving little spare bandwidth for prefetching.
Prefetching is much more successful in the base model, result-

ing in an average improvement of 1170 in the case of 17-cycle

latency. Prefetching helps even more in the case of 35-cycle

latency, improving performance for the base model by 19%. The
large model also sees a significant improvemen~ 11% for the 17-

cycle latency and 17% for the 35-cycle latency. In addhion to the

average performance, prefetching substantially improves worst

case performance, reducing the CPI for the short latency cases in
our study by 25% and in the long latency case by 35%. ‘l%e cost of

adding prefetch buffers is fairly smrdl; for the baseline configura-
tion, the prefetch buffers are only 20% of the instruction cache
size.

5.3 Execution Unit Stall Distribution

The IPU has 4 major stall conditions: instruction cache stall

while waiting for instructions, load stall when the result of a load

instruction is referenced before it has been returned by the LSU,

Reorder Buffer full stall, and LSU stall when the LSU is fu~ or is

using the data busses to fill the cache. Figure 6 shows the CPI

penalty contributed by each of these stall conditions.
Except for the small model case, most stalls are caused by

instruction misses and data cache accesses. In the small model,

most cycles are spent waiting for data from the LSU. In the base
and large models, performance is not very sensitive to the size of

the IPU reorder buffer because the processor often stalls when it

references the result of a load instruction before the reorder buffer

fills. In the large model, the small percentage of LSU-Busy strolls
indicates that most of the data hits in the cache, the large percent-
age of Load stalls is caused by the three-cycle latency of the pipe-
Iitted data cache.

5.4 Degree of Non-blocking Data Cache

One of the largest contributors to high performance is the abil-
ity to support multiple outstanding load instructions simulta-

neously. The number of outstanding data cache misses is set by
the number of MSHR registers. Figure 7 shows the effect of

changing the number of possible outstardhtg memory references
for the different cache models. The small model shows a dramatic
performance increase when additional MSHR registers are
allowed, and the base model shows a small improvement when

adding an MSHR. The large model show some performance
decrease when the number of MSHR registers is reduced. from

four. All models get highest performance when 4 MSHR entries

are available.

5.5 Write Cache Size

Table 5 gives hit-rate statistics for the on-chip write cache of
the different models. The write cache size varies from two lines in
the small model to eight lines in the large model. The hit rate

includes both load and store data accesses. The write cache has a

surprisingly high hit rate, even for the small model.

This high hit rate helps to reduce significantly the write traffic

off chip. The number of store transactions is reduced to 44% of

the number of store instructions for the small case, to 30% for the

base model and to only 22% for the large model. This is more than

a two-fold reduction in write traffic for the small model and nearly

a five-fold reduction for the large model.

5.6 Analysis of Integer Data and Recom-

mendations

Figure 8 presents all of the simulation data points for the

latency-17 data sets for the espresso benchmark. The other bench-
marks and latencies give similar performance curves.This graph
demonstrates the trade-offs between cost and performance for our
machine model. There are three points of note: first, the points

labeled A rdl have only a single MSHR and lie well above other
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model espresso Ii eqntott compress Sc gcc

small 29.22 35.97 31.64 37.82 46.61 42.02

baseline 37.17 49.17 46.34 46.29 52.53 54.93

large 43.73 60.52 60.03 59.67 59.56 63.17

Table 5: Integer Write Cache Hit Rate Percentage

configurations of equivalent cases, showing the negative impact

of blocking caches. The points labeled B correspond to the large

model. A performance plateau exists here that yields little gain in

performance even if significant additional cost is expended. The
benefits of prefetching are demonstrated by comparing points C

and D. They differ only in that D adds prefetching. In general, the

small model shows a large performance increase with additional

resources, the base model shows a small increase, and the large
model shows little increase.

The previous data suggest some obvious changes to our base-
line machines. All models benefit from increased MSHR entries,
because the cost is low, adding MSHR entries provides price-per-

formance benefit.

A write cache larger than in the baseline model has little per-
formance benefit. In addition, the prefetch performance of the

large model is no better than that of the baseline model. The point
labeled Eon the graph suggest reducing the resources for the Iarge

model to a 4 Kbyte Icache, a 4-entry write cache, a 6-entry reorder

buffer and 4 MSHR entries. Dual issue is reasonable only if sup-

ported by sufficient memory resources and becomes less attractive
as memoxy latency increases.

61
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5.7 Allocation of Floating Point Resources

As with the IPU, the FPU has a large design space to consider
when allocating resources. The options include the number of

entries for the instruction, load, and store queues, the size and

organization of the reorder buffer and register tie, and the com-

plexity of the floating point functional units. More sophisticated
algorithms can be used by functional units to reduce latencies, and

pipeiining can be used to reduce critical paths, ail at the experw
of adding more transistors. One must determine how to use the
available resources most effectively. Dual-issue of floating point

instructions adds several issue constraints to that for integer

instructions. The usefulness of this feature is dependent on the

amount of parallelism in the floating-point workload.

5.8 Floating Point Issue Policy

Two issue policies were investigated: 1) in-order issue with in-
order completion of instructions, and 2) in-order issue with out-of

order completion of instructions. The former approach does not
allow multiple issue of instructions or instructions active in multi-

ple functional units. Single issue and dual issue arc both possible
for the latter policy. Floating point durd issue is constrained by
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Figure 7: Effects of Changing MSHR Count

The line with cpen cap bars corresponds to the three standard dual issue configurations. The “mshr variations” line was cbtained by irsxeasing the num-
ber of MSHRa for the small and baseline models from one and two respectively, to two and four. The Iargs model waa modrfied by reducing fhe number of
MSHRS from four to two.
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data dependencies, reorder buffer stalls, busy functional units,
result bus conflicts, and by fewer than two entries active in the

instruction queue.

I 1 I

In Order Ieeue Single Dual
Benchmark and Completion Issue Issue

aivinn 2.113 2.1110 2.107

doduc 1.957 1.7821 1.671

ear 1.299 1.1549 1.022

hydro2d I 1.298 I 1.1234 I 0.999

mdlido2 I 1.344 I 1.1357 I 0.948

naea7 1.702 1.2939 0.957

ora 1.906 1.7800 1.701

epice2g6 1.219 1.2037 1.203

su2cor 1.973 1.7057 1.557

Average 1.577 1.4012 1.248

Table 6: CPI Figures for Three FPU Issue Policies

Dual issue of floating point instructions incurs some hardware

cost, including two additional read ports on the register file and
reorder buffer. A sense amplifier-based register file provides addi-

tional read ports without a large penalty in speed or area. The
instruction queue needs an additionrd read port to allow access to
the instruction immediately below the head of the queue. Addi-
tional source operand busses are n~ded, as well as more complex

control for instruction decoding and issue. Much of the instruction
decoding is done in advance of the actual issue stage of the FPU.

Results for the various policies are summarized in Table 6. A
12% improvement in performance for single issue anda21% gain

for dual issue are realized, compared to the in-order issue in-order
completion policy.
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5.9 Floating Point Memory Resources

Figure 9 (a), (b), and (c) show performance metrics for a sin-

gle instruction issue policy with various sizes of inskuction

queue, load data queue, and reorder buffer, respectively. The

instruction and load queues reflect sizes of 1 to 5 entries, while

the rworder buffer varies in size from 3 to 11 entries. For the

instruction queue, the performance improvement becomes quite

flat out at 3 entries. Dual issue places a greater demand on the

instruction queue; simulations (not shown) suggest that design

with five entries is optimal. For load instructions, the results indi-

cate that two entries are needed. This result is not surprising,

since most of the benchmark applications utilize double precision

numbers and two 32-bit loads are needed per operand. The FPU

being implemented rdso supports double-word loads and stores,
which should improve performance, since on average 15% of

floating point instructions executed in the SPEC benchmarks are
loads. The sensitivity to reorder buffer size decreases for more

than six entries, suggesting that this is the average number of
floating point instructions active in the FPU pipeline.

5.10 Floating Point Functional Unit Laten-

cies

Numerous floating point addition optimizations could be used
to reduce latency, rdl at the expense of transistor count and implem-
entation complexity. These include parallel paths for alignment
and normalization, fast generation of the sticky bit and leadlng
one prediction for normalization. A two cycle add unit incorpo-
rating these approaches occupies the most area, primarily due to

the use of two 53-bit mantissa adders. Compared to this imple-
mentation, a three cycle unit can result in an area reduction of

20%. Further reduction of resources devoted to addition will

result in four to five cycle latencies.
Conventional approaches to multiplication involve a partial

product array (3-2 or 4-2 carry-save adders) followed by a carry-

propagate mantissa adder. Booth recoding of the input operands

10000 20000 30000 40000 50000 60000

RBE
Figure 8: Espresso Full Coet-Performance

Four classes of systems are shown. The four squares represent single issue eystema of various cache size. The eight diamonds represent dual issue eystema
with a 1K instrixtion cache and a variety of sizes of other memory elements. Likewise the triangles are 2K systems and the circles are 4k systems
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Figure 9: FPU Cost Studies

The numbers above the vertical bars indicate queue sizes for (a), (b), and (c); and Iatencies in clock cycles for (d), (e), (9,and (g).

can be used to reduce the number of levels in the array by one, at more than 50 cycles, Additional techniques can be employed to

the expense of adding recoding multiplexors. Analysis of these perform on-the-fly conversion from redundant form to sign-mag-
two approaches in GSAS DCFL showed that the area savings of nitude form and on-the-fly rounding of the result. A square root

Booth-recoding are small when compared to the increase in the instruction can be mapped easily to the same hardware used for

complexity of the design. Increases in capacitance along criticrd division, with little additional cost.
paths of a Booth recoded multiplier tend to offset the reduction in Figure 9 (d), (e), (f), and (g) show data for various latencies in
logic depth. Another rdtemative involves the iterative use of a the four execution units. Addition and multiplication both show a

smaller array. This approach reduces the size of the multiplier 17% change in CPI for latencies ranging from one to five cycles.

considerably, however five cycles are needed to produce a result. For addition, latencies of two, three, and four correspond to inter-
Furthermore, the multiplier is not pipelined, forcing subsequent esting realistic designs. An add unit with a latency of two results
multiply instructions to wait for the current instruction to com- in only a 290 improvement in performance over one taking three
plete. cycles, while a latency of 4 is 5% worse than a latency of 3. Simi-

Non-restoring division algorithms can be enhanced by repre- larly, each additional cycle of latency in the multiplier reduces
senting intermediate results in a higher radix redundant form. performance (as meaaured by CPI) by 4%. Performance is rela-
SRT-2, SRT-4, and SRT-8 approaches return one, two, and three tively insensitive to latency; in the division unit, over a latency
bits per cycle, respectively. Latencies vary in the range of 20 to range of 10 to 30 cycles latency performance changes by 8%.
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Conversion instructions occur very infrequently and have little

impact on overall performance.

The same simulations were repeated for non-pipelined addition

and multiplication units. Interestingly, the degradation in perfor-

mance is less than 5%. The latches used for pipelining these two

units account for approximately 2S% of the area of each unit. Not

pipelining these units can result in significant savings in area and

power dissipation.

5.11 Floating Point Recommendations

The FPU architecture being implemented as a result of these

studies has the following features:

● dual issue,
. 5 entry instruction queue,
. 2 ermy load data queue,
. 6 entry reorder buffer,
. 3 cycle add uni~
. 5 cycle multiply unit,
. 19 cycle division unit, and
. 2 result busses.

6 Conclusion

The performance contributions of various architectural fea-

tures were evrduated for a high clock rate superscalar machine. A

register bit equivalence model for the cache structures in the pro-
cessor was utilized, and the performance sensitivity to the cache
sizes was evaluated. We found that without special scheduling in
the compiler, large memory latencies reduce the benefit of super-
scalar-issue, and that when memory latencies am long, a less
expensive machine can provide performance similar to a more
complicated superscalar machine. At shorter memory Iatencies,

both the baseline and large models showed an improvement in

performance for superscalar issue.

Nonblocking data caches were shown to be importan~ addi-

tional Miss Status Holding Registers can greatly increase perfor-
mance for machines having a small transistor budget. With a

single MSHR, the pipeline blocks at each cache access, and LSU

stalls contribute the majority of stall cycles. Prefetching was also
shown to be beneficial.

Increasing the size of the reorder buffer, prefetch buffers and

write cache in the large model provided little improvement in per-

formance. A machine deviating from the baseline only in instmc-

tion cache size (4 K-byte) achieved nearly the same performance

as the large model at a much lower cost. In the large machines,

most stalls were caused by the three-cycle latency of the pipelined

data cache. Better compiler scheduling could #bssibly remove

some of this penalty.
Floating-point performance can be enhanced by the use of

inexpensive decoupling queues. The latencies of floating point

functional units have a modest impact on performance, but a
larger impact on area. These functional units can be further

reduced in size by removing pipeline latches. Dual issue achieves
a reasonable gain in performance for the additional resources

required.
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