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Abstract

This paper discusses the design of a high clock rate (300MHz)
processor. The architecture is described, and the goals for the
design are explained. The performance of three processor models
is evaluated using trace-driven simulation. A cost model is used to
estimate the resources required 1o build processors with varying
sizes of on-chip memories, in both single and dual issue models.
Recommendations are then made to increase the effectiveness of
each of the models.

Keywords: Pipelining, decoupled architecture, prefetching,
non-blocking cache, resource allocation, superscalar, floating
point latencies.

1 Introduction

This paper describes the decisions made in the design of an
experimental high-performance general purpose processor suit-
able for a workstation or a high end PC system. The goals include
integer performance of 200 SPECint and floating point perfor-
mance of 300 SPECfp, with power dissipation such that the sys-
tem can be air cooled. Fast switching speeds led us to choose
Gallium Arsenide Direct Coupled FET Logic (DCFL) combined
with MCM technology to build a compact multiple-chip process-
ing element. The MIPS R3000 ISA was chosen because it is a rel-
atively clean architecture with good architectural development
tools.

Figure 1 shows single chip microprocessor clock frequencies
for processors presented at the International Solid State Circuit
Conference. Over the past 10 years the frequency of microproces-
sors has increased at a rate of about 40% per year. The fastest chip
introduced each year is usually at least twice as fast as the slowest
chip for that year, and the gap has been widening. The fastest
clock rate processors do not necessarily have the highest system
level performance, but the overall trend reflected in this data
strongly suggests that processor clock frequencies will continue to
increase.

In contrast, the rate of increase in main memory speed has
been lower than that of CPUs. The core-based main memory
access time of the CDC6600 was 1000ns [15]. Main memory
operations on the 1978-vintage VAX 11-780 required 6 cycles of
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200ns, or 1200ns. Access times in current high-end workstations
such as the HP 9000/735 have decreased to around 150ns, but this
may be as many as 20 cycles. Over the past decade, main memory
speeds have improved by only a factor of 10, while processor
speeds have increased by a factor of 100. As cycle times continue
to improve, the primary cache miss penalties will rise from their
current levels to as many as 100 clock cycles.

The increasing performance difference between processor and
memory speeds, combined with large but finite transistor budgets,
presents many interesting trade-offs for computer architects.
Given a limited resource budget, the designer must choose the
allocation of resources needed to optimize performance. With a
limited chip area, resources could be devoted to increasing the on-
chip cache size, adding other memory structures, or adding execu-
tion units. At high clock rates, additional execution units may be
starved for data because of long memory latencies.

This paper examines the resource allocation in superscalar
multi-chip microprocessor design. The architecture is briefly
described and the goals for the design are explained. The perfor-
mance of three processor configurations is evaluated using trace-
driven simulation. A cost model is used to estimate the resources
required to build processors with varying sizes of on-chip memo-
ries in both single and dual issue versions. Recommendations are
then made to increase the effectiveness of each of the models.

2 System Overview

The Aurora III microprocessor is the culmination of three
years of research on implementing pipelined microprocessors
using GaAs technology. A block diagram of the Aurora III system
is shown in Figure 2. The system is composed of four custom
GaAs chips: three logic chips and a 32 K-bit SRAM used for
building a 64 K-byte data cache. The logic chips are the Floating
Point Unit (FPU), Integer Processing Unit (IPU) and Memory
Management Unit (MMU). This partitioning is similar to the SGI
R8000 TFP processor [6].

For the system level performance of our GaAs chipset to be
competitive with that of contemporary CMOS processors the
GaAs system must overcome with increased clock speed the
CMOS advantage of much higher integration density, which
allows increased parallelism and larger caches. We have explored
processor microarchitectures that allow parallel instruction issue
without adversely impacting system cycle time.

The IPU consists of five functional modules that operate semi-
autonomously to fetch, decode, execute and retire instructions.

This work was supported by the Denfese Advanced Research Projects
Agency under Contract Number DAAL03-90-C-0028.
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Figure 1: Microprocessor Clock Frequencies

Single chip microprocessor clock frequencies for processors presented at the last eleven Internalional Solid State Circuit Conferences. The line

shown represents about a 40% increase per year in frequency.

The TPU is similar to the IBM-Motorola PowerPC 603 and 604
processors [2] in that it includes a Bus Interface Unit (BIU), an
Integer Execution Unit (IEU), an Instruction Fetch Unit (IFU),
and a Load Store Unit (LSU). In addition to these the IPU has a
dedicated Prefetch Unit (PFU) for data and instructions.

Bus Interface Unit The Aurora Il memory system is
designed to provide a large memory bandwidth from main mem-
ory through the MMU to the primary caches. Sustained transfer
rates of over 1.5 G-bytes per second have been demonstrated in
the BIU performance model for typical workloads [14]. Long
memory latencies require high bandwidth to support prefetching
and nonblocking caches [9]. The asynchronous BIU interface
allows external communication and internal computation to pro-
ceed independently.

The IPU is connected to the MMU by a bidirectional 32-bit
bus. To tolerate the transaction latency in the system, multiple
pending requests are buffered in separate transmit and receive
queues. A split-transaction collision-based protocol allows either
the IPU or MMU to immediately send data without arbitrating for
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the bus. Using a Rambus-like signaling scheme [10], the clock is
generated on-chip and sent with the data to minimize clock skew.
Data is transferred on both edges of the clock to maximize IO
bandwidth.

Instruction Fetch Unit The IFU fetches instructions and
maintaining the state of the on-chip Instruction Cache. Icache
misses are detected in the IFU, and the missing instructions are
requested from the MMU via the BIU. The front of the IEU pipe-
line stalls until the needed instructions arrive, but the LSU contin-
ues to process pending data cache misses, and the reorder buffer
continues to retire completed instructions.

An on-chip instruction cache was required to support a two-
instruction-per-cycle issue rate. Too few IO pins were available to
fetch 64 instruction bits each cycle. There are few restrictions on
which instructions can issue together. Other than true instruction
dependencies, in which an instruction uses the result of the imme-
diately preceding instruction, the primary issue constraint is that
only a single memory access instruction can be executed in a
given cycle.
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Figure 2: Processor Block Diagram

To speed the instruction issue logic, instructions are prede-
coded before being inserted into the instruction cache. Figure 3
shows the arrangement of a decoded instruction. All instructions
are grouped into pairs, with the EVEN instruction occupying the
lower of two consecutive addresses, and the ODD occupying the
next sequential address. The DI bit indicates whether an instruc-
tion pair dependency prohibits dual issue. The CONT field indi-
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cates whether the instruction pair includes a control flow
instruction, such as a jump or branch. The MIPS ISA prohibits a
branch instructions in a branch delay slot, so there will be a maxi-
mum of one control flow instruction in each pair. If the instruction
pair contains a control flow instruction, the NEXT field contains
the cache index of the target instruction. This branch folding [3]
reduces the critical path for a dual issue machine by eliminating
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Figure 3: Decoded Instruction Cache Fields

the branch pipeline bubble. The target of the branch can be
fetched on the next cycle, without needing to compute a target
address from the address of the branch instruction.

2.1 Instruction Execution Unit

The key elements of the IEU are the 32x32 integer register file
and two execution pipelines, which consist of an ALU and a six-
entry reorder buffer [13]. A register file scoreboard [15] detects
instruction dependencies and stalls execution until the needed
operands are ready.

To achieve high system clock frequencies, both the area and
the number of logic levels needed to implement a logic function
must be minimized. Among the main contributors to die area in
our previous GaAs microprocessors were the pipeline latches.
These latches increase the operating frequency by breaking long
operations into smaller stages, but they also increase the layout
area. In addition, every pipeline stage after the ALU, such as load
delay slots, requires a forwarding path back to the ALU inputs.
The state latches and forwarding network for one of our earlier
prototypes account for 50% of the execution pipeline area{16].

One way to minimize the area penalty for state latches is to
have a short execution pipeline. Like the Motorola 88K [1], we
have adopted variable length pipelines, reducing the length of the
integer pipelines to four cycles. Memory instructions require an
additional two or three cycles to produce their results. Virtual
addresses are generated in either of two identical integer ALUs.
The address and any store data are transmitted to the LSU and
data cache in one cycle. Forwarding paths allow the ALU output
and the reorder buffer contents to be used as inputs for the next
instruction, avoiding pipeline bubbles.

2.2 Prefetch Unit

A set of hardware prefetch buffers is included to minimize
long memory system latencies caused by the fast clock rate and
multiple chip partitioning. The prefetch buffers predict future
memory requests and bring the data on chip before it is referenced
by the IPU.

Jouppi proposed the addition of a small set of associative
prefetch buffers, called stream buffers, to fetch sequential lines
ahead of the current program counter [7]. The stream buffer con-
sists of a tag register, a tag comparator, a set of status bits and a
number of prefetch cache lines for instructions and data. If a
memory reference misses in the primary cache, the stream buffers
are checked to see whether the required data have already been
requested. Jouppi showed that stream buffers can be highly effec-
tive for small caches, reducing the cache miss rate by up to half.
Since we have limited space for on-chip caches, these are an ideal
solution.

On each instruction or data cache miss, a stream buffer is allo-
cated and initialized to fetch the next sequential line. This buffer
initially fetches only a single line. If a subsequent request hits in a
prefetch buffer, additional sequential lines are fetched until the
buffer is filled.
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23 Load-Store Unit

To simplify the execution unit pipelines, a separate function
unit processes all memory operations. The IEU computes the
memory address in its ALU and checks for any illegal address
exceptions. The address and store data for store instructions are
passed to the LSU. The IEU also provides a 3-bit tag value indi-
cating the reorder buffer destination slot.

To accommodate a data cache large enough to achieve good
system-level performance, the cache RAMs must be external to
the CPU. The system supports external caches of 16 K-, 32 K-,
and 64 K-bytes. The external data cache is direct-mapped, pipe-
lined, and has a three-cycle latency. A new access can be initiated
each cycle. The cache is accessed using two unidirectional 64-bit
data busses and a 14 bit address bus.

To amortize the long primary cache miss penalty, the processor
supports multiple outstanding cache misses. As long as the target
register of a load instruction is not referenced, other instructions
can issue, execute and complete, leaving their results in the reor-
der buffer. Even more importantly, the access delay of multiple
cache misses can be overlapped. A number of Miss Service Hold-
ing Registers (MSHRs) maintain the state of pending cache
misses. An MSHR is reserved for each memory instruction active
in the LSU pipeline, and if no MSHRs are available, the processor
stalls until one is free. A machine with only one MSHR cannot
overlap memory operations, and must process each load or store
sequentially.

Write Cache The LSU contains a 32-word coalescing write
buffer called the Write Cache [8]. The 32 data words are orga-
nized as four cache lines of eight words per line. The four lines are
fully associative.

The write cache groups multiple memory references into a sin-
gle BIU transaction. Memory write behavior has two characteris-
tics that are effectively exploited by the write cache. Multiple
writes will often occur to the same address, as would happen in an
inner loop during the updating of the loop index. After the first
write to the index address, subsequent writes would hit in the
write cache, replacing the previous value. Thus fewer BIU trans-
actions are required to keep the memory system coherent. The
second memory access pattern that benefits from a write cache is
vector-like operations such as memory copies or floating-point
intensive code. In these operations, each entry in the write cache
is written in succession, but only one BIU transaction is needed to
retire the eight words.

Write Validation Because the MMU is off-chip, the proces-
sor cannot retire store instructions until it is known that the
address accessed will not cause a memory fault. Receiving a
response from the MMU requires many cycles, so simply query-
ing the MMU about each write address is an unacceptable solu-
tion. Instead the write cache divides the address tags into page and
offset fields. If the page field of the current write address matches
any of the valid page fields contained in the write cache, then a
write or access fault is not possible. In effect, the write cache
operates as a four entry micro-TLB.

Floating Point Support In this architecture, floating point
memory instructions transfer data directly between memory and
the integer and floating point register files. Unlike integer stores,
floating point store data is not immediately ready at the time the
instruction is transferred to the LSU. Thus, write cache eviction
and data cache writeback must wait for the data. This adds a cer-
tain degree of complexity to the synchronization of the floating
point data and the cache line within the write cache. In order to
meet package pin constraints, all floating point instruction and
data transfers occur via the input and output busses of the primary
data cache.



24  The Branch Delay Slot Problem in Su-
perscalar Architectures

Although modern RISC machines are designed to have few
implementation artifacts, a notable exception is the architectural
branch delay slot. The branch delay slot was added to allow the
processor to execute an instruction while the instruction at the
branch target was being fetched, avoiding bubbles in the pipeline.
Because architectural branch delay slots significantly complicate
the design of superscalar machines, they have been eliminated
from more recent architectures such as the DEC Alpha [4]. The
branch delay slot causes problems for a superscalar machine in
many of the same ways that variable length instructions cause
problems for CISC machines. The delay slot may lie on the next
cache line. If this line causes a cache miss, the delay slot address
and the target address must both be saved until the cache line for
the delay slot is fetched. The delay slot must then be issued, and
instruction fetching must resume at the target of the branch. Even
worse problems occur when the branch and the delay slot span
virtual memory page boundaries.

3 Floating Point Unit Design

3.1 Overview

Limited integration levels in GaAs constrain the amount of
functionality that can be placed on a single chip. One obvious par-
titioning, shown in Figure 2, includes separate FPU, IPU, and data
cache chips. Floating point operations tend to have longer laten-
cies than integer instructions, which are made worse when inter-
chip communication is necessary. To support double precision
numbers, floating point datapaths are wider than their integer
counterparts. The time needed to drive control signals across these
wide datapaths places an upper limit on clock frequency and
results in different maximum operating frequencies for the IPU
and FPU. The resources of the IPU and FPU can be used more
efficiently if the architecture decouples their operation; one way to
achieve this is through the use of instruction and data queues.

The use of an instruction queue instead of a single entry
instruction buffer allows the IPU to slip ahead of the FPU during
program execution. Instead of stalling for FPU data dependencies,
the IPU is able to transfer floating point instructions and continue
execution. The TPU will be forced to stall due to the FPU only
when the queue becomes full or when it has to wait for the result
of an FPU operation. The use of an instruction queue does impact
the precise handling of exceptions, since the IPU may be many
instructions ahead by the time a floating point exception is
detected. One solution involves having both a precise execution
mode and a higher performance mode. For the former, instruc-
tions are not transferred to the FPU unless they are guaranteed
never to cause an exception; examination of operand exponents

and the exception flags can be used to predict whether an excep-
tion can occur.

The use of an instruction queue necessitates a corresponding
load queue to store load data prior to its being written into the
floating point register file. However, the depth of this queue does
not need to be as large as that of the instruction queue. Similarly, a
store queue is used to hold the results of floating point store and
move-to-IPU instructions.

The FPU also includes a 32x64 entry register file, reorder
buffer, scoreboard, and separate functional units for addition, mul-
tiplication, division and conversion. Up to two floating-point
instructions from the queue can issue per cycle, to any two of the
functional units. Two independent busses are available to write
results from the various functional units to the reorder buffer. The
add unit is pipelined with a latency of three cycles. The multiply
and divide units are iterative and can produce a result in five and
19 cycles, respectively. The conversion unit has a latency of two
cycles and performs conversions between single, double, and inte-
ger formats. Each functional unit supports the IEEE-754
specification for rounding modes and exceptions.

4 Architectural Evaluation

4.1 Benchmarks

Architectural performance was evaluated using the integer and
floating point Spec92 benchmarks. Time constraints imposed by
other phases of the design process limited the length of the bench-
marks that could be run. The integer benchmarks used the “small
test” input file, and the floating point benchmarks were limited to
their first 90 million cycles. In all, about 176 million instructions
were run from the integer suite, and about 810 million from the
floating point suite. All benchmarks were compiled using GCC
with no additional code rescheduling.

4.2 Architectural alternatives

Three machine models, referred to as the large, baseline and
small models, were chosen to evaluate the effects of resource allo-
cation and memory latency. The hardware resources allocated to
each are listed in Table 1. Each of the three models is evaluated
with one or two execution pipes, and with secondary memory sys-
tem average latencies of 17 and 35 cycles, corresponding to
medium and fast clock rates. Thus, results for 12 configurations
are reported.

The register bit equivalent (RBE) model of Mulder [11] was
used to evaluate the implementation cost in chip area of the differ-
ent configurations. The RBE model provides a normalized mea-
sure for the area cost of different microarchitectural components.
For our machines the RBE is the area required to implement a 1-
bit static latch. For GaAs DCFL, one static latch requires about 16

Reorder
D Cache Write Cache Buffer Prefetch MSHR
Model I Cache Size Size Size Entries Buffers Entries
Small 1 Kbyte 16 Kbyte 2 lines 1
Baseline 2 Kbyte 32 Kbyte 4 lines
Large 4 Kbyte 64 Kbyte 8 lines 4

Table 1: The Three Machine Models and their Associated Resources
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IPU Element Cost in RBE FPU Element Cost in RBE

1 Kbyte Cache Block 8,000 1 Data Resource Block (RF, SB) 4,000
2 Kbyte Cache Block 12,000 1 Queue Entry (instruction/data) 50/80
4 Kbyte Cache Block 20,000 1 Add Unit (1-5 cycles) 5,000-1,250
1 Write Cache Line 320 1 Multiply Unit {1-5 cycles) 6,875-2,500
1 Prefetch Line 320 1 Divide Unit (10-30 cycles) 2,500-625
1 Reorder Buifer Entry 200 1 Conversion Unit (1-5 cycles) 2,500-1,250
1 MSHR Entry 50

1 Integer Execution Pipeline 8192

Table 2: Processor Element Cost in RBE Units

transistors and corresponds to an area of about 3600 square
microns. Static RAM elements are denser, with a single bit requir-
ing an area equal to 0.5 RBE. However, RAM blocks have addi-
tional overhead devoted to decoding and sensing. This overhead is
a significant fraction of total area for small RAM blocks. The cost
of each microarchitectural element is listed in Table 2. These fig-
ures are based on layout obtained during chip design. In addition
to memory elements, the cost of an execution pipeline is also esti-
mated. An important assumption in this analysis is that the cost of
interconnecting microarchitectural elements is an overhead. that
scales with the sum of their areas.

The cost of data cache is not included in our analysis because
limits on die size placed the data cache in chips separate from the
IPU and FPU. A more comprehensive cost analysis would opti-
mize a system consisting of the IPU, FPU and data cache chips on
the MCM in a way analogous to the intra-chip design problems
considered in this paper. Finally, it is important to note that
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5 Study Results

The size and quantity of both on-chip memory structures and
execution pipelines were varied to study the trade-offs between
memory structures and execution logic. The Cycles Per Instruc-
tion (CPI) for each benchmark were measured, and can be com-
pared to the implementation cost to evaluate the effectiveness of
various memory and pipeline structures. The base model instruc-
tion cache hit rate is 96.5% and data cache hit rate is 95.4%; these
numbers agree with those published in [5].
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Figure 4: Dual and Single Issue Performance

Performance vs. cost in RBES is shown for systems having17 cycle latency and 35 cycle latencies. In each graph, the costs of 6 systems are shown. Three are sin-
gle issue and three are dual issue. The vertical ines with square caps show the range of CPI for each configuration. The upper cap is the maximum CPI, the lower

cap is the minimum CP, and the line is the average CPI.
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model espresso li eqntott compress sc gee
small 56.26 50.79 94.89 50.73 45.97 58.89
baseline 61.02 45.33 88.34 53.13 49.01 57.75
large 67.33 40.56 51.41 53.75 48.05 56.10

Table 3: Integer | Prefetch Hit Rate Percentage

model espresso li eqntott compress sC gce
smalt 7.06 9.80 2.85 8.33 22.34 7.84
baseline 8.95 14.41 2.29 13.13 27.42 8.63
large 7.82 14.57 1.53 17.16 30.00 10.02

5.1

Table 4: Integer D Prefetch Hit Rate Percentage

Model Performance Evaluation

the dual and single issue machines have similar cost-performance

We first examine the performance of each of the three models.
Figure 4 shows the results for dual and single issue for the 3 base-
line models with average secondary latencies of 17 and 35 cycles.
For each graph the cost difference between the two curves is
caused by the addition of a second execution pipeline, which has a
cost of 8192 RBEs.

With 17-cycle latencies, the addition of the second pipe results
in higher performance with the baseline and large models. The
single issue base model has a similar cost and much better perfor-
mance than the dual issue small model. The large model with dual
issue achieves the best performance by 12.7%, but with a hard-
ware cost increase of 20.4%. With 35-cycle secondary latencies,
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curves; the dual issue model achieves a 9.9% CPI improvement
over the single issue model.

5.2  Instruction and Data Prefetching

Table 3 and Table 4 show the prefetch buffer hit rates for the
instruction and data streams. A prefetch hit occurs if the data
misses in the primary cache and hits in one of the prefetch stream
buffers. Average hit rates for the integer SPEC benchmarks are
58% for the instruction stream and about 12% for the data stream.
Floating-point prefetch data hit rates average 14.4% for the base
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Figure 5: Effects of Prefetch Removal

Performance in CPI vs. cost in RBESs 1s shown for systems having 17 and 35 cycle latencies. In each graph, the costs of 6 systems are shown. All are dual issue.
The vertical lines with square caps show the range of CP! for each configuration. Filled caps indicate no prefetch and hollow caps prefetch. The average CPis for
the three systems with prefetch are connected by a line. The average CP! for the three without prefetch are also connected by a line.
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Figure 6: Break Down of Stall Penalties

model, but the peak hit rate on some of the benchmarks is as high
as 60%.

Figure 5 shows the effects of removing the prefetch buffers
from each of the dual issue models. Prefetching is of little benefit
in the small model for a number of reasons. There are only two
buffers in the small model, which leads to thrashing between
instruction and data references. In addition, the cache miss rates
are high, leaving little spare bandwidth for prefetching.

Prefetching is much more successful in the base model, result-
ing in an average improvement of 11% in the case of 17-cycle
latency. Prefetching helps even more in the case of 35-cycle
latency, improving performance for the base model by 19%. The
large model also sees a significant improvement: 11% for the 17-
cycle latency and 17% for the 35-cycle latency. In addition to the
average performance, prefetching substantially improves worst
case performance, reducing the CPI for the short latency cases in
our study by 25% and in the long latency case by 35%. The cost of
adding prefetch buffers is fairly small; for the baseline configura-
tion, the prefetch buffers are only 20% of the instruction cache
size.

53 Execution Unit Stall Distribution

The IPU has 4 major stall conditions: instruction cache stall
while waiting for instructions, load stall when the resuit of a load
instruction is referenced before it has been returned by the LSU,
Reorder Buffer full stall, and LSU stall when the LSU is full or is
using the data busses to fill the cache. Figure 6 shows the CPI
penalty contributed by each of these stall conditions.

Except for the small model case, most stalls are caused by
instruction misses and data cache accesses. In the smail model,
most cycles are spent waiting for data from the LSU. In the base
and large models, performance is not very sensitive to the size of
the TPU reorder buffer because the processor often stalls when it
references the result of a load instruction before the reorder buffer
fills. In the large model, the small percentage of LSU-Busy stalls
indicates that most of the data hits in the cache, the large percent-
age of Load stalls is caused by the three-cycle latency of the pipe-
lined data cache.
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54  Degree of Non-blocking Data Cache

One of the largest contributors to high performance is the abil-
ity to support multiple outstanding load instructions simulta-
neously. The number of outstanding data cache misses is set by
the number of MSHR registers. Figure 7 shows the effect of
changing the number of possible outstanding memory references
for the different cache models. The small model shows a dramatic
performance increase when additional MSHR registers are
allowed, and the base model shows a small improvement when
adding an MSHR. The large model show some performance
decrease when the number of MSHR registers is reduced. from
four. All models get highest performance when 4 MSHR entries
are available.

5.5 Write Cache Size

Table 5 gives hit-rate statistics for the on-chip write cache of
the different models. The write cache size varies from two lines in
the small model to eight lines in the large model. The hit rate
includes both load and store data accesses. The write cache has a
surprisingly high hit rate, even for the small model.

This high hit rate helps to reduce significantly the write traffic
off chip. The number of store transactions is reduced to 44% of
the number of store instructions for the small case, to 30% for the
base model and to only 22% for the large model. This is more than
a two-fold reduction in write traffic for the small model and nearly
a five-fold reduction for the large model.

5.6  Analysis of Integer Data and Recom-

mendations

Figure 8 presents all of the simulation data points for the
latency-17 data sets for the espresso benchmark. The other bench-
marks and latencies give similar performance curves.This graph
demonstrates the trade-offs between cost and performance for our
machine model. There are three points of note: first, the points
labeled A all have only a single MSHR and lic well above other



model espresso li eqntott compress sC gce
small 29.22 35.97 31.84 37.82 46.61 42.82
baseline 37.17 49.17 48.34 46.29 52.53 54.93
large 43.73 60.52 60.03 59.87 59.56 63.17

Table 5: Integer Write Cache Hit Rate Percentage

configurations of equivalent cases, showing the negative impact

5.7

Allocation of Floating Point Resources

of blocking caches. The points labeled B correspond to the large
model. A performance plateau exists here that yields little gain in
performance even if significant additional cost is expended. The
benefits of prefetching are demonstrated by comparing points C
and D. They differ only in that D adds prefetching. In general, the
small model shows a large performance increase with additional
resources, the base model shows a small increase, and the large
model shows little increase.

The previous data suggest some obvious changes to our base-
line machines. All models benefit from increased MSHR entries,
because the cost is low, adding MSHR entries provides price-per-
formance benefit.

A write cache larger than in the baseline model has little per-
formance benefit. In addition, the prefetch performance of the
large model is no better than that of the baseline model. The point
labeled E on the graph suggest reducing the resources for the large
model to a 4 Kbyte Icache, a 4-entry write cache, a 6-entry reorder
buffer and 4 MSHR entries. Dual issue is reasonable only if sup-
ported by sufficient memory resources and becomes less attractive
as memory latency increases.

O dual issue
B mshr variations

O small

eline

1.5 - large

| |
30000 40000

RBE

17 cycle latency

T
10000 20000

]
50000

As with the IPU, the FPU has a large design space to consider
when allocating resources. The options include the number of
entries for the instruction, load, and store queues, the size and
organization of the reorder buffer and register file, and the com-
plexity of the floating point functional units. More sophisticated
algorithms can be used by functional units to reduce latencies, and
pipelining can be used to reduce critical paths, all at the expense
of adding more transistors. One must determine how to use the
available resources most effectively. Dual-issue of floating point
instructions adds several issue constraints to that for integer
instructions. The usefulness of this feature is dependent on the
amount of parallelism in the floating-point workload.

5.8  Floating Point Issue Policy

Two issue policies were investigated: 1) in-order issue with in-
order completion of instructions, and 2) in-order issue with out-of
order completion of instructions. The former approach does not
allow multiple issue of instructions or instructions active in multi-
ple functional units. Single issue and dual issue are both possible
for the latter policy. Floating point dual issue is constrained by

6 —
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Figure 7: Effects of Changing MSHR Count

The line with open cap bars corresponds to the three standard dual issue configurations. The “mshr variations” line was obtained by increasing the num-
ber of MSHRSs for the small and baseline models from one and two respectively, to two and four. The large model was modified by reducing the number of

MSHRs from four to two.
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data dependencies, reorder buffer stalls, busy functional units,
result bus conflicts, and by fewer than two entries active in the
instruction queue.

In Order Issue Single Dual
Benchmark | and Completion Issue Issue
alvinn 2.113 2.1110 2.107
doduc 1.957 1.7821 1.671
ear 1.299 1.1549 1.022
hydro2d 1.298 1.1234 0.999
mdijdp2 1.344 1.1357 0.948
nasa7 1,702 1.2939 0.957
ora 1.906 1.7800 1.701
spice2g6 1.219 1.2037 1.203
su2cor 1.973 1.7057 1.657
Average 1.577 1.4012 1.248

Table 6: CPI Figures for Three FPU Issue Policies

Dual issue of floating point instructions incurs some hardware
cost, including two additional read ports on the register file and
reorder buffer. A sense amplifier-based register file provides addi-
tional read ports without a large penalty in speed or area. The
instruction queue needs an additional read port to allow access to
the instruction immediately below the head of the queue. Addi-
tional source operand busses are needed, as well as more complex
control for instruction decoding and issue. Much of the instruction
decoding is done in advance of the actual issue stage of the FPU.

Results for the various policies are summarized in Table 6. A
12% improvement in performance for single issue and a2 21% gain
for dual issue are realized, compared to the in-order issue in-order
completion policy.

5.9 Floating Point Memory Resources

Figure 9 (a), (b), and (¢) show performance metrics for a sin-
gle instruction issue policy with various sizes of instruction
queue, load data queue, and reorder buffer, respectively. The
instruction and load queues reflect sizes of 1 to 5 entries, while
the reorder buffer varies in size from 3 to 11 entries. For the
instruction queue, the performance improvement becomes quite
flat out at 3 entries. Dual issue places a greater demand on the
instruction queue; simulations (not shown) suggest that design
with five entries is optimal. For load instructions, the results indi-
cate that two entries are needed. This result is not surprising,
since most of the benchmark applications utilize double precision
numbers and two 32-bit loads are needed per operand. The FPU
being implemented also supports double-word loads and stores,
which should improve performance, since on average 15% of
floating point instructions executed in the SPEC benchmarks are
loads. The sensitivity to reorder buffer size decreases for more
than six entries, suggesting that this is the average number of
floating point instructions active in the FPU pipeline.

5.10 Floating Point Functional Unit Laten-
cies

Numerous floating point addition optimizations could be used
to reduce latency, all at the expense of transistor count and imple-
mentation complexity. These include parallel paths for alignment
and normalization, fast generation of the sticky bit, and leading
one prediction for normalization. A two cycle add unit incorpo-
rating these approaches occupies the most area, primarily due to
the use of two 53-bit mantissa adders. Compared to this imple-
mentation, a three cycle unit can result in an area reduction of
20%. Further reduction of resources devoted to addition will
result in four to five cycle latencies.

Conventional approaches to multiplication involve a partial
product array (3-2 or 4-2 carry-save adders) followed by a carry-
propagate mantissa adder. Booth recoding of the input operands
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Figure 8: Espresso Full Cost-Performance

Four classes of systems are shown. The four squares represent single issue systems of various cache size. The eight diamonds represent dual issue systems
with a 1K instruction cache and a variety of sizes of other memory elements. Likewise the triangles are 2K systems and the circles are 4k systems
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Figure 9: FPU Cost Studies

The numbers above the vertical bars indicate qusue sizes for (a), (b), and (c); and latencies in clock cycles for (d), (e), (), and (g).

can be used to reduce the number of levels in the array by one, at
the expense of adding recoding multiplexors. Analysis of these
two approaches in GaAs DCFL showed that the area savings of
Booth-recoding are small when compared to the increase in the
complexity of the design. Increases in capacitance along critical
paths of a Booth recoded multiplier tend to offset the reduction in
logic depth. Another alternative involves the iterative use of a
smaller array. This approach reduces the size of the multiplier
considerably, however five cycles are needed to produce a result.
Furthermore, the multiplier is not pipelined, forcing subsequent
multiply instructions to wait for the current instruction to com-
plete.

Non-restoring division algorithms can be enhanced by repre-
senting intermediate results in a higher radix redundant form.
SRT-2, SRT-4, and SRT-8 approaches return one, two, and three
bits per cycle, respectively. Latencies vary in the range of 20 to
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more than 50 cycles. Additional techniques can be employed to
perform on-the-fly conversion from redundant form to sign-mag-
nitude form and on-the-fly rounding of the result. A square root
instruction can be mapped easily to the same hardware used for
division, with little additional cost.

Figure 9 (d), (e), (), and (g) show data for various latencies in
the four execution units. Addition and multiplication both show a
17% change in CPI for latencies ranging from one to five cycles.
For addition, latencies of two, three, and four correspond to inter-
esting realistic designs. An add unit with a latency of two results
in only a 2% improvement in performance over one taking three
cycles, while a latency of 4 is 5% worse than a latency of 3. Simi-
larly, each additional cycle of latency in the multiplier reduces
performance (as measured by CPI) by 4%. Performance is rela-
tively insensitive to latency; in the division unit, over a latency
range of 10 to 30 cycles latency performance changes by 8%.



Conversion instructions occur very infrequently and have little
impact on overall performance.

The same simulations were repeated for non-pipelined addition
and multiplication units. Interestingly, the degradation in perfor-
mance is less than 5%. The latches used for pipelining these two
units account for approximately 25% of the area of each unit. Not
pipelining these units can result in significant savings in area and
power dissipation.

5.11 Floating Point Recommendations

The FPU architecture being implemented as a result of these
studies has the following features:

dual issue,

5 entry instruction queue,
2 entry load data queue,

6 entry reorder buffer,

3 cycle add unit,

5 cycle multiply unit,

19 cycle division unit, and
2 result busses.

e 8 ¢ & o o & 9

6 Conclusion

The performance contributions of various architectural fea-
tures were evaluated for a high clock rate superscalar machine. A
register bit equivalence model for the cache structures in the pro-
cessor was utilized, and the performance sensitivity to the cache
sizes was evaluated. We found that without special scheduling in
the compiler, large memory latencies reduce the benefit of super-
scalar-issue, and that when memory latencies are long, a less
expensive machine can provide performance similar to a more
complicated superscalar machine. At shorter memory latencies,
both the baseline and large models showed an improvement in
performance for superscalar issue.

Nonblocking data caches were shown to be important; addi-
tional Miss Status Holding Registers can greatly increase perfor-
mance for machines having a small transistor budget. With a
single MSHR, the pipeline blocks at each cache access, and LSU
stalls contribute the majority of stall cycles. Prefetching was also
shown to be beneficial.

Increasing the size of the reorder buffer, prefetch buffers and
write cache in the large model provided little improvement in per-
formance. A machine deviating from the baseline only in instruc-
tion cache size (4 K-byte) achieved nearly the same performance
as the large model at a much lower cost. In the large machines,
most stalls were caused by the three-cycle latency of the pipelined
data cache. Better compiler scheduling could ;9'0ssibly remove
some of this penalty.

Floating-point performance can be enhanced by the use of
inexpensive decoupling queues. The latencies of floating point
functional units have a modest impact on performance, but a
larger impact on area. These functional units can be further
reduced in size by removing pipeline latches. Dual issue achieves
a reasonable gain in performance for the additional resources
required.
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